Section 5.3 Solving Trigonometric Equations
Example 1. Solve $1-2 \cos x=0$ where $0 \leq x<2 \pi$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2. Solve $\sin x+1=-\sin x$ where $0^{\circ} \leq x<360^{\circ}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{cc}\text { Example 4. Solve } \sec x \sin x=\sin x & \text { where } 0^{\circ} \leq x<360^{\circ} \\ -\sin x & \sin x\end{array} \begin{gathered}\sin x \\ \sec x \sin x-\sin x\end{gathered} \right\rvert\,$
\qquad
\qquad
\qquad

Example 5. Solve the following on the interval $[0,2 \pi)$.

$$
\begin{aligned}
& \text { a) } 2 \cos ^{2} x+\cos x-1=0 \\
& 2(\cos x)^{2}+\cos x-1=0 \\
& (2 \cos x-1)(\cos x+1)=0 \\
& 2 \cos x-1=0 \quad \cos x+1=0 \\
& \cos x=\frac{1}{2} \quad \cos x=-1 \\
& \frac{k^{\frac{\pi}{3}}}{} x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}
\end{aligned}
$$

b) $2\left(\cos ^{2} x+3 \sin x-3=0\right.$

$$
\begin{aligned}
& 2\left(1-\sin ^{2} x\right)+3 \sin x-3=0 \\
& 2-2 \sin ^{2} x+3 \sin x-3=0 \\
& -1\left(-2 \sin ^{2} x+3 \sin x-1\right)=(0)-1 \\
& 2 \sin ^{2} x-3 \sin x+1=0 \\
& (2 \sin x-1)(\sin x-1)=0 \\
& 2 \sin x-1=0 \quad \sin x-1=0 \\
& \sin x=\frac{1}{2} \quad \sin x=1 \\
& x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}
\end{aligned}
$$

c)

$$
\begin{aligned}
& (\sec x+1)^{2}=(\tan x)^{2} \\
& \sec ^{2} x+2 \sec x+1=\tan ^{2} x \\
& \sec ^{2} x+2 \sec x+1=\sec ^{2} x-1 \\
& 2 \sec x+2=0 \\
& \sec x=-1 \\
& \frac{1}{\cos x}=-1 \\
& \cos x=-1 \\
& x=\pi
\end{aligned}
$$

Example 6. Solve the following on the interval $[0,2 \pi)$. a) $2 \sin (2 t)+1=0$ When the variable inside a cosine, sine secant, or Cosecant is multiplied by a \# we need to add $2 \pi n$ to the angle.
$\sin (2 t)=-\frac{1}{2}$
$2 t=\frac{7 \pi}{6}+2 \pi n \quad 2 t=\frac{11 \pi}{6}+2 \pi n$
Solve for t

$$
\begin{array}{ll}
t=\frac{7 \pi}{12}+\frac{1 \pi n}{12} & t=\frac{11 \pi}{12}+\frac{12 \pi n}{12} n \\
n=0: \frac{7 \pi}{12}, \frac{11 \pi}{12} \\
n=1: \frac{19 \pi}{12}, \frac{23 \pi}{12}
\end{array}
$$

b) $\cot \left(\frac{x}{2}\right)+1=0$

When the variable inside a tangent or cotangent is multiplied by a \# we need to add πn to the angle.
\qquad

