Objective: use the law of sines to:
*Solve for unknowns in oblique triangles.
*Use the law of sines to model and solve real-life problems.

* Find areas of oblique triangles

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ or $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
Example 1. Given $A=123^{\circ}, B=41^{\circ}$, and $a=10$
inches, find c.

Example 2. A triangular plot of land has interior angles $A=95^{\circ}$ and $C=68^{\circ}$. If the side between these angles is 115 yards long, what is the length of the other two sides?

$$
a=\frac{115 \sin 95^{\circ}}{\sin 17^{\circ}}=391.838 y d
$$

$$
\frac{a}{\sin 95^{\circ}}=\frac{115}{\sin 17^{\circ}}
$$

$$
\frac{c}{\sin 68^{\circ}}=\frac{115}{\sin 170}
$$

$$
s=\frac{115 \sin 68^{\circ}}{\sin 170^{\circ}}=364.694 y d
$$

Example 3. Given $A=26^{\circ}, b=5$ feet, and $a=21$ feet, find the other side and the other two angles.

$$
D
$$

Check for two solutions when given Angle-Side-Side

$$
\sin B=\frac{5 \sin 26^{\circ}}{2}
$$

$$
\sin B=0.1044
$$

$$
B=\operatorname{Sin}^{-1}(0.1044 \ldots)
$$

$$
C=148.009^{\circ} B_{1} \approx 5.991^{\circ}
$$

$$
\begin{aligned}
& \frac{21}{\sin 26^{\circ}}=\frac{\kappa}{\operatorname{ci1148.0090}} \\
& l=\frac{21 \sin 148.0090}{\sin 260} \\
& e=25.379 \mathrm{ft}
\end{aligned}
$$

$$
B_{2} \approx 180-5.991^{\circ} \approx 174.009^{\circ}
$$

$$
\sin \varphi 26^{\circ}+174.009^{\circ}>180^{\circ}
$$

$$
B_{2} \text { is not possible! }
$$

section 6.1. notebook
Example 4. Given $B=78^{\circ}, c=12$, and $b=5$, find $\underset{B}{\operatorname{angle}} C$. $5 S$

$$
\begin{aligned}
& \frac{\sin 78^{\circ}}{5}=\frac{\sin C}{12} \\
& \sin C=\frac{12 \sin 78^{\circ}}{5}
\end{aligned}
$$

$$
\sin C=2.348
$$

there is no Such Δ !

Example 5. Given $A=29^{\circ}, a=6$, and $b=10$,

$$
\frac{\sin 29^{\circ}}{6}=\frac{\sin B}{10}
$$

$$
B=53.903^{\circ}
$$

$$
\begin{aligned}
& B_{1}=53.903^{\circ} \\
& C_{1}=97.097^{\circ} \\
& C_{1}=12.281
\end{aligned}
$$

$$
B_{2}=180-53.900^{\circ}=126.097^{\circ}
$$

$$
C_{x}=24.903^{\circ}
$$

$$
x_{2}=5.211
$$

From the law of sines, the area of an oblique triangle is:

$$
\text { Area }=\frac{1}{2}(\text { base })(\text { height })=\frac{1}{2} c b \sin A=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B
$$

Example 6. Find the area of the triangle in which $B=143^{\circ}, a=7$ meters and $c=18$ meters.

Example 7. Two fire ranger towers lie on the east-west line and are 5 miles apart. There is a fire with a bearing of $\mathrm{N} 27^{\circ} \mathrm{E}$ from tower 1 and $\mathrm{N} 32^{\circ} \mathrm{W}$ from tower 2 . How far is the fire from tower 1?

