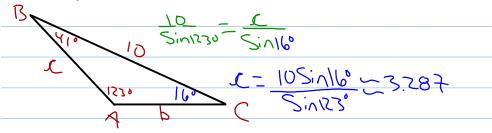
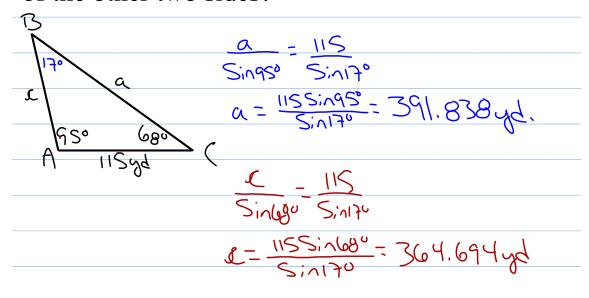
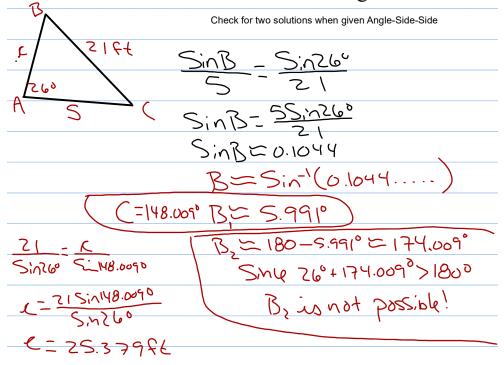

section 6.1.notebook

Objective: use the law of sines to:

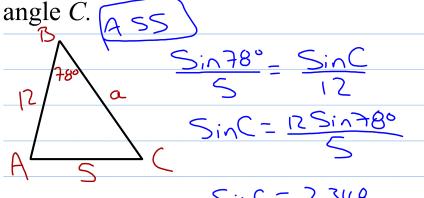

- *Solve for unknowns in oblique triangles.
- *Use the law of sines to model and solve real-life problems.
- * Find areas of oblique triangles



$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \text{ or } \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$


Example 1. Given $A = 123^{\circ}$, $B = 41^{\circ}$, and a = 10 inches, find c.

Example 2. A triangular plot of land has interior angles $A = 95^{\circ}$ and $C = 68^{\circ}$. If the side between these angles is 115 yards long, what is the length of the other two sides?



Example 3. Given $A = 26^{\circ}$, b = 5 feet, and a = 21 feet, find the other side and the other two angles.

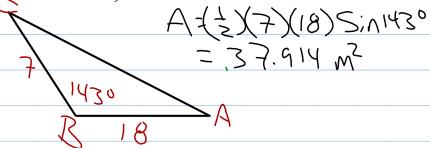
section 6.1.notebook

Example 4. Given $B = 78^{\circ}$, c = 12, and b = 5, find

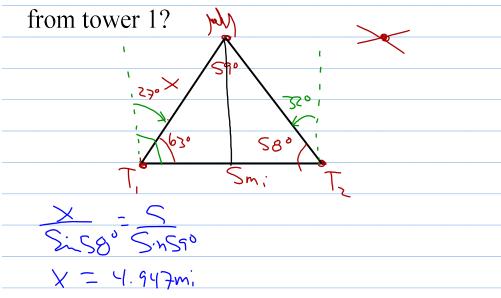
: there is no Such A!

Example 5. Given $A = 29^{\circ}$, a = 6, and b = 10, find B.

By ASS $A = 53.903^{\circ}$ $C_1 = 97.097^{\circ}$ $C_2 = 24.903^{\circ}$ $C_3 = 12.201$ $C_4 = 5.211$


section 6.1.notebook

From the law of sines, the area of an oblique triangle is:


$$Area = \frac{1}{2}(base)(height) = \frac{1}{2}cb\sin A = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B$$

Example 6. Find the area of the triangle in which

$$B = 143^{\circ}$$
, $a = 7$ meters and $c = 18$ meters.

Example 7. Two fire ranger towers lie on the east-west line and are 5 miles apart. There is a fire with a bearing of N27°E from tower 1 and N32°W from tower 2. How far is the fire

