Section 6.2 Law of Cosines

 In an oblique triangle the law of cosines states:$a^{2}=b^{2}+c^{2}-2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
note \Varangle mems side a stutstere equation $2 b c$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$ or $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C \quad$ or $\quad \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Example 1. Given $a=5, b=8$, and $c=7$, find all three of the angles.

Always find the largest angle first.

(largest x ie always opposite the largest)
So $x B$ is the largest x.
$8^{2}=7^{2}+5^{2}-2(7)(5) \cos B$
$8^{2}-7^{2}-5^{2}=-2(7)(5) \cos B$

$$
\frac{8^{2}-7^{2}-5^{2}}{-2(7)(5)}=\cos B
$$

$$
B=\cos ^{-1}\left(\frac{8^{2}-7^{2}-5^{2}}{-2(7)(5)}\right)=81.787^{\circ}
$$

after you find the largest \Varangle using the law of cosines, use the lew of sines to find the rest.

$$
\begin{aligned}
& \quad \frac{\sin \left(81.787^{\circ}\right)}{8}=\frac{\sin C}{7} \rightarrow \frac{7 \sin \left(81.787^{\circ}\right)}{8}=\sin C \\
& \rightarrow C=\sin ^{-1}\left(\frac{7 \sin \left(81.787^{\circ}\right)}{8}\right)=60.000^{\circ} \\
& N O \omega \Rightarrow A=180-60.000^{\circ}-81.787^{\circ} \\
& \therefore \times A=38.213^{\circ} \\
& \therefore B=81.787^{\circ}, C=60.000^{\circ}, A=38.213^{\circ}
\end{aligned}
$$

Example 2. Given $\mathrm{C}=111^{\circ}, \mathrm{a}=27$, and $\mathrm{b}=18$, find the remaining side and two angles.

\qquad
\qquad
\qquad

Example 3. A port is 50 miles due north of a lighthouse. A ship is 30 miles from the lighthouse at a bearing of $\mathrm{N} 37^{\circ} \mathrm{E}$. How far is the ship from the port?
\qquad
\qquad
\qquad
\qquad

Heron's Area Formula

$$
\begin{aligned}
& \text { Area }=\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(s-\mathrm{b})(s-\mathrm{c})} \\
& \text { where } s=\frac{(a+b+c)}{2} \quad \begin{array}{c}
\text { if you enter } \\
\text { (a+bb+c) } \\
2
\end{array} \text { in calcubter }
\end{aligned}
$$

$$
\text { 2nd }(-)](2 n d)(-)-a)(2 n d((-)]-b)(\text { 2nd }(-)]-C
$$

Example 4. Find the area of the triangular region with sides 50 feet, 58 feet, and 69 feet.

