Section 6.3 Vectors in the Plane

Def: Vector - A directed line segment that has both magnitude and direction.
Example 1. Let \boldsymbol{v} be the vector from $\mathrm{P}(0,0)$ to $\mathrm{Q}(4,5)$ and \boldsymbol{u} be the vector from $R(2,3)$ to $S(6,8)$. Show that $\boldsymbol{v}=\boldsymbol{u}$.

Component Form of a Vector

Given the vector with initial point $P\left(P_{x}, P_{y}\right)$ and terminal point $Q\left(Q_{x}, Q_{y}\right)$ the component form is: \rangle

The magnitude of v is:

$$
\|v\|=\sqrt{\left(Q_{x}-P_{x}\right)^{2}+\left(Q_{y}-P_{y}\right)^{2}}=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Example 2. Write the component form of vector v with initial point (4,-7) and terminal point $(-1,5)$ and find the magnitude.

Let $u=\left\langle u_{x}, u_{y}\right\rangle$ and $v=\left\langle v_{x}, v_{y}\right\rangle$ be vectors and k be a real number called a scalar. Then,

$k u=k\langle\underbrace{}_{x}, u_{y}\rangle=\left\langle k u_{x}, k u_{y}\right\rangle$

Example 3. Let $u=\langle-5,2\rangle$ and $v=\langle 6,-3\rangle$ find the following.
a) $4 u=4\langle-5,2\rangle$

$$
=\langle-20,8\rangle
$$

b) $u+v=\langle-5+6,2+(-3)\rangle$
c) $2 u-v=2\langle-5,2\rangle-\langle 6,-3\rangle$

$=\langle-16,7\rangle$

Direction Angle of a vector - The positive angle created between the positive x-axis and the vector.

$v=\left\langle v_{x}, v_{y}\right\rangle=\langle\| \|\|\cos \theta\|\| \| \| \sin \theta\rangle \begin{gathered}\text { where } \tan \theta=\frac{v_{v}}{v_{y}} \\ \theta=\tan ^{-1}\left(\frac{y}{v_{x}}\right)\end{gathered} v_{x}$

Example 4. Find the component form of v given its magnitude and direction angle. $\|v\|=3$ and $\theta=45^{\circ}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear Combination of a vector - Put the vector in component form $v=\left\langle v_{v}, v_{y}\right\rangle$, then write as a linear combination with i assigned to v_{x} and j assigned to $\nu_{y} \cdot v=\widetilde{\nu}_{x} \mathrm{i}+\nu_{y} \mathrm{j}$
Example 5. Let r be a vector with initial point $(3,-2)$ and terminal point $(\hat{1} 0,7)$. Write r as a linear combination of i and j .

\qquad
\qquad
\qquad

Example 6. Two cables hold a 3500 lb weight in place as shown below. Determine the tension in each cable.

\qquad
\qquad

Example 7. An archer shoots an arrow at 8° from horizontal with a velocity of 92 feet per second. Find the vertical and horizontal components of the arrows velocity. \qquad
\qquad
\qquad
\qquad

